Friday, 14 February 2014

When science goes Captain Planet for conservation

Studying the effects of habitat fragmentation on diversity of wildlife...


In the hearts of forests and jungles around the world there exist members of a feral strain of scientist who grew up on a steady diet of the Captain Planet cartoons. SnakeThey’ve swapped lab coats for khaki shirts, plastic shoe covers for walking boots, and safety goggles for binoculars in order to study and help protect the creatures surviving in the most biodiverse, but threatened, habitats in the world. Rumours of spandex-wearing are entirely unfounded though.In between the Amazon basin, the hot eastern Brazilian savannahs and the temperate grasslands of Argentina lies the Atlantic Forest. It is home to a diversity of plants and animals to rival that of the famous Amazon Rainforest itself, including a number of species found nowhere else such as the golden lion tamarin, the maned three-toed sloth, and the woolly spider monkey. The forest once stretched along one third of the coast of South America, inland as far as Paraguay. However, today the Atlantic Forest has the dubious status of being one of the most devastated habitats in the world. Shockingly, just 7% remains. What makes this statistic even worse is that the forest consists not of one continuous stretch of woodland but instead thousands of small fragments separated by huge crop and cattle farms.Deforestation of the Atlantic Forest, like in many places around the world, has had a directly detrimental effect on many species of animals by destroying their habitats. However, in all of these ecosystems across the world the wildlife that remains – even in pristine, untouched habitat – are under threat due to the effects of fragmentation.Habitat fragmentation spells very bad news for wildlife for many reasons. Firstly, small fragments don’t have the volume of fruit and other vegetation to support complex ecosystems. Low volumes of fruit and vegetation means few plant matter-eating animals, and even fewer large animals that prey on them. Secondly, large animals require not just large territories but also access to the territories of other populations of their species. This helps to avoid inbreeding and instead maintain a healthy level of genetic diversity. Unfortunately for many species of land animal, a fragment half a mile away on the other side of a cattle farm may as well be on the other side of the world.Finally, fragmentation means that more of the habitat is bordering against agricultural land. This degrades the quality of the habitat along its edges because farming has an effect on the soil, amount of shade and the temperature. This ‘Edge Effect’ is revealed in poor tree growth and the absence of many animal species up to 100 metres in from the forest edge. Additionally, more bordering against human land means more encroachment by hunters and by agricultural development, so fragments get replaced by crop fields and cattle ranches much faster than large areas do – it’s like the way a teaspoon of sugar into your tea dissolves faster than a sugar cube.There are lots of reasons that biologists may find themselves working in a jungle, savannah or swamp, other than wishing they were Steve Irwin. But one of the key concerns of ecology and conservation biologists is to document what level of biodiversity – that is, the variety of different animal and plant species – that an area can support. Biodiversity is an important indicator of how healthy an ecosystem is – decreases can reflect the detrimental effects of deforestation, disease or hunting, and increases can reflect progress of efforts to protect habitats. For example, biodiversity may be lower, i.e. there are fewer different species, in a small fragment of the Atlantic Forest compared to a much larger fragment. Often it is the biggest species that are absent in small habitat fragments – hefty grazing mammals that need a lot of land and vegetation like elephants, giraffes or tapir, or large animals at the top of their food chain like jaguars, caiman or anaconda. However, small animals are also vulnerable, especially if they have very specific dietary or shelter needs. Indeed, many of the most endangered species in the world are small animals that live a fragile existence.Assessing biodiversity starts with trying to work out how many species there are in an area, and estimating how many individuals there are of each species based on how many you find. Unluckily for scientists and ecotourists alike, habitats are rarely like safari parks, where animals are pretty much always visible and easy to observe. Biologists and conservationists don’t lament this fact though –wildlife’s fear of humans is ideal for avoiding hunters. But between animals being rare, well-hidden, fast, living in impenetrable habitat such as thick forest, or spread over a huge area, it can be difficult or even impossible to find a species. That’s why assessing a location’s biodiversity uses a wide range of different scientific techniques. These techniques range from a very simple bucket dug into the ground, to complex DNA analysis techniques in the lab. The technique you use depends on the kind of habitat you are assessing and the kind of animals you’re looking for.The most basic method is to simply walk through a habitat and keep your eyes and ears open for the animals themselves or signs of them. This works for conspicuous, noisy animals such as apes, or birds with identifiable nests, or creatures with predictable hiding habits such as some snakes
Despite being simple, this technique does need careful consideration – timing and location are everything.
Trapping methods are useful for a wide range of different animals that are harder to spot. Small, ground-dwelling animals such as rodents, scorpions, tarantulas, flightless insects, frogs, lizards and small snakes can all be assessed with drift fences and pitfall traps: they bump into a temporary fence (usually a long sheet of plastic) and in trying to get around it fall into buckets dug into the ground. With a layer of soil and shelter at the bottom, these buckets house the animals until they can be checked, recorded and released. Bigger, trigger-mechanism traps can be used to trap mammals and lizards of various sizes, often using bait to entice them in. Bats and low-flying birds can be trapped using fine nets called mist nets.For spotting cautious and elusive animals, such as jaguar or snow leopards, a camera trap is a wonderful piece of equipment. A weather-proof camera with a motion sensor can be strapped to a tree trunk or rock and left for days or sometimes weeks to digitally capture any animal that happens to pass by. They can be expensive, but they’re worth it: camera traps often provide the only picture or video of a species in an area.For those animals that can be caught, small microchips can be swiftly injected under the skin so it can be identified if caught again – calculating how many captures are actually ‘recaptures’ provides an estimate of how many of that species there are in total. For those animals that are elusive and more difficult to trap, camera traps are great for determining the presence of that species but are unlikely to be able to provide a good estimate of the number of individuals in a population.This is where laboratory science comes back into the picture. Genetic analysis is now one of the most useful and widespread tools in conservation science – and usually involves poo! Faeces give us a whole host of information – not only can it help to identify the diet and diseases of a species, the DNA of the ‘donor’ can be extracted and amplified in order to determine the individual’s identity, gender and family heritage. Obtaining the genetic code of just a few individuals can provide enough information to estimate the population number and determine the level of genetic diversity.In short, both field and lab techniques combine to help us determine if an ecosystem fragment is large enough, and has sufficient access to other fragments, to maintain healthy populations of its resident species. With this information, conservationists can go about providing these animals with what they need in order to survive well into the future. In fact, Captain Planet probably did some of his best work in a lab coat...

Thursday, 9 January 2014

Measurements [Physics]

Physical quantities

those quantities which can be measured accurately are called physical quantities
The fundation of physics rest upon physical quantities
for exemple mass length thime velocity force density temperature electricalcurrent etc

Base Quantities:

these are the minimum number of those quantities in term of which other quantities can be defined

Derived Quantities 

those quantities whos definations are based on other physical quantities called as derived quantities
"the measurement of a base quantities"
involves following two steps:
1) the choice of standered 
2)estblishment of a procedure for comparing the quantity to be measured with the standerd 
An Ideal Standerd has two characteristics
a) It is accessible,
b) it is invariable.

international system of unit

In 1960, an international committee agreed on a set of definations and standered to descirbe the physical quantities this system is called the system internation [SI]
this system is based up on 
a)Base quantities
b)supplimenteary unit 
c)derived unit
A) base unit:-
the unit defined arbitrarily for the measurement of seven base quantities in comparison with them are called base quantities
the name of base quantiirs and symbols are given below:

sr.no           physical quantitites      Si unit         symbols

1                      length                       meter             m

2                      mass                          kilogram       kg

3                      time                           second           s

4                       electrical current    ampere         a

5                       Temperature           kelvin            k

6                       light intancity         candela         cd

7                       amount of substance          mole              mol


Basics of physics part 1

Our first is related to the physics in which we'll discuss different principals and method of physics
first of all we must familier with the physics

Science:

 Ever since man has started to observe , think and reason he has been wondering about the world around him. He tried to find ways to organize the disorder prevailing in the observed facts about the natural phenomenon and things in an orderly manner.
His attempts resulted in the birth of single discipline Science called as Natural Phenomenon after it when he gets huge knowledge he divides natural phenomenon into the different branches named as physics, chemistry, mathematics, biology,astronomy and many more...

Introduction to physics:

Physics is the branch of science which deals the study of matter energy and their interactions
also can be said The study of inanimated world is called Physics
Physics has hundreds of branches which will discuss in future in this blog

Physics has three frontiers 1st , 2nd, and 3rd
1st frontier

first the world of extremely large, universe it self
2nd frontier

the world of extremely small, as nucleus of an atom

3rd frontier

third one is middle sized thing as sun and earth

 some branches of physics

nuclear physics; it deals with the nuclei, particle physics which is concerned with the ultimate particles by which matter is composed,relstive mechanics which deals with the velocites approcheing within speed of light
in next post we'll read measurements

Notification

As you all are familiar that I mostly upload complex material, previous days I receive some complains that my data is hard to understand most of viewers don't have any idea about basics of bio, chemistry and physics...
that's why firstly I'll post basics concepts of sciences...
feel free to feedback

Wednesday, 8 January 2014

The Louisiana Wetlands: An Introduction

Science Tales from the Red Stick

A wetland can be defined in many ways but most definitions include three distinguishing features: water, either at the surface or within the root zone, soil conditions unique to this wet environment, and vegetation known as hydrophytes that is adapted to these conditions. Wetlands can be fresh or salt water and in Louisiana there are both and they're equally in danger of disappearing.
According to the United States Geological Survey (USGS) and the Louisiana Department of Fish and Wildlife (LDWF) Louisiana has about 3,560 square kilometers of fresh water wetland and 6,600 square kilometers of tidal (salt water) wetland. That’s an area equivalent to two states of Rhode Island or almost 14 Isle of Mans. Wetlands include landscape features you are familiar with such as marshes, bogs, and swamps.
The wetlands I grew up with were small. You could easily walk across them and you could always see the edge. This is not the case in Louisiana. Here the wetlands stretch to the horizon. They are dotted with small fishing camps and telephone poles that sit at weird angles due to the shifting ground. Often flooded roads and abandoned houses blot the landscape. Despite this I had only to spend a single day out there accompanying two scientists on their monthly monitoring trip to Barataria Bay southwest of New Orleans, to be hooked.
We loaded our small boat early in the morning and headed to the southern most sampling station closest to the Gulf of Mexico. The plan was to work our way north collecting water samples for phytoplankton (microscopic plants), zooplankton (microscopic animals) and bacteria counts, nutrient analyses, and other water characteristics (temperature, salinity, dissolved oxygen, light attenuation). Regular monitoring is part of larger effort to understand the changes occurring along Louisiana’s coastline.
On this day, we wound our way up and down narrow passages surprising fish and sneaking up on alligators. The sky was grey and ominous. Because it is so flat you can see thunderstorms well in the distance - the rain and lightening drumming the water. Twin storms merged into one and chased us all the way to our last sampling station. From there, we headed into a bayou. A bayou is a secondary extension of a larger waterway – in this case – the Mississippi River. Thick with dark green vegetation and monstrous plants, this bayou had a prehistoric and deeply wild feel. Alligator eyes rose just above the surface and brilliant blue horse flies, the size of small birds, buzzed overhead. The water was slow moving and brown, hiding whatever it was that might be waiting underneath. What the bayou’s future holds is more readily detectable.
The coast of Louisiana is a deltaic system built of sediment transported from all over the United States by the Mississippi River. The Mississippi River drains 41% of the contiguous states of the US and is fed by the Missouri, Arkansas, and Ohio Rivers.  The river carries this sediment load to the coast where it settles out and forms sediment lobes or land. Typically, as silt and clay clog the natural path of the river, it switches course finding a more direct and quicker route to the coast. This process is called delta switching and it occurs approximately once every one thousand years.
But as the population grew, and with the establishment of the The Louisiana WetlandsPort of New Orleans, it became necessary to control the Mississippi River. Levees were constructed to maintain its path and the natural delta switching that occurred for thousands of years was interrupted. Gone then was the sediment distribution and ultimately the land building. Now the Gulf of Mexico can encroach, un-impeded by the River. Sometimes wetlands can keep up with sea level rise through sediment trapping and soil building but not here. These factors combine with land subsidence, the compaction of sediment, to augment the drowning of these wetlands. While subsidence can be a natural geologic process, human activities may also be the cause. Fluid (i.e. oil, gas, groundwater) extraction from underneath the marshes and/or artificial drainage systems have been blamed for high rates of subsidence in Louisiana. The final straw is shipping channels that have been cut and the pipelines that have been laid beneath the marshes. While this has increased navigation abilities it has also allowed saltwater inundation of the many freshwater marshes. For example, the cypress forests that once characterized this area are quickly vanishing because they cannot tolerate saltwater.
The disappearance of these wetlands has innumerable consequences. The coastal landscape is an important habitat for animals and migrating birds while the marsh provides an essential nursery ground for fish. According to Louisiana State University’s Agricultural Center, 95% of commercial fish landings for the Gulf of Mexico depend on the coastal wetlands and 25% of all seafood consumed in the US originates from Louisiana. The bountiful harvest of oysters and crawfish (crayfish) that once drove the local economy is threatened too. Many people have relocated or constructed their houses on stilts to protect them from the encroaching water. On a national scale almost 30% of the oil and gas consumed in the US passes through ports and pipes of South Louisiana. But without these wetlands more than 48,000 km of pipelines would be exposed to open water and waves. On an even larger scale, hurricanes that have struck Louisiana have even provoked increases in global oil prices.
But I am most interested in the loss of wetlands for another reason. Wetlands are areas rich in organic matter and can be important areas for nutrient cycling. Specifically, I am interested in the cycling of nitrogen and a process called denitrification. Denitrification is bacterial process that converts usable forms of nitrogen to unusable forms. It is therefore a natural cleansing process which can remove man-made nitrogen (such as fertilisers) from the environment. As the water from the Mississippi River drains the US it not only brings sediment for land building but high concentrations of nutrients (such as nitrates and phosphates). Most of these nutrients originate from agricultural practices high in the watershed. When the nutrients reach the coast they can stimulate the growth of phytoplankton which can be good for the growing fish. But, like all things, too many nutrients and too much phytoplankton growth can lead to negative consequences. Most notably in this case, when the phytoplankton die they sink to the bottom and decompose, which leads to the water becoming oxygen depleted, killing shellfish and finfish. One striking example of this is the Dead Zone in the Gulf of Mexico. The Dead Zone is a 13,000 - 21,000 square km area of oxygen-depleted water devoid of most forms of life. While many factors contribute to its size and duration, the high concentration of nutrients entering from the Mississippi River is thought to be the main cause.
So here is our dilemma – how do we build land and yet decrease the amount of nutrients entering the Gulf of Mexico? The answer may just lie in sustaining healthy wetlands. One option is to allow more water from the Mississippi River to be directed into the wetlands. By doing this, as it flowed to the coast the river would once again distribute sediment and the wetland might act like a giant filter and remove contaminating nitrogen. Working with colleagues here at LSU I hope to improve our understanding of how much nutrient cycling can occur in these systems and how these processes might change with temperature and water flow.
Beauty-wise, Louisiana’s coast rivals the icecaps of the Antarctic, the rolling waves of the Pacific and the tropical beaches of the Caribbean. But protecting these wetlands is about more than preserving a magnificent landscape. We should all feel a great sense of urgency to guard a culture, an economy, and a natural wonder teeming with life...
References:
- Mitsch, W.J. and Gosselink, J.G. (1993). Wetlands. Van Nostrand Reinhold, New York, N.Y.
- Dunne, M. (2005). America’s Wetland: Louisiana’s vanishing coast. Louisiana State University Press. Baton Rouge, LA
- America’s Wetland Foundation - 
www.americaswetland.com

 

Protein Origami: Pop-up Books & Nature's Polymers

...the science of studying protein folding

I have, and if you're like me then you've probably also taken a peek behind the dinosaur to find out how the pop-up works. Peering between the pages like this is similar to the work that goes on in labs around the world where scientists are trying to understand the workings of one of Nature's most powerful
Proteins are massive molecules that are crucial for keeping the cells in our bodies in working order. For instance they provide the rails and the motor for microscopic cellular ‘trains’ that move biochemical cargos from one end of a cell to another, they act as molecular messengers allowing cells to communicate with each other and they package DNA so that the regions of the genome that aren’t being used are tidily coiled away. They also monitor what the cell is doing, and when something causes trouble, they get rid of it, which might even involve killing the cell. And just as the pop-up book is made from pieces of card glued to the page in the right order, proteins are made from molecular cards called amino acids, which are linked together in the right order.
If this gluing is done correctly, the protein spontaneously folds to take up its completed 3D shape. And just like opening a pop-up book, most of the time the protein folding works smoothly, but occasionally things can go wrong. A mutation in the DNA sequence coding for a certain protein can lead to the inclusion of the wrong amino acid, which is akin to inserting a wrongly shaped piece of card in the pop-up book. This causes the mature protein to go out of shape or "mis-fold", so it cannot carry out its intended role correctly. In fact an amazing 80% of human disease-causing mutations affect proteins in this way.
Proteins recognise and interact with each other according to their shape, so having the correct structure is critical for a protein to work effectively. If it fails in this role the results can be fatal. For instance some proteins do the job of killing malfunctioning cells, such as cells that have become malignant, and under these circumstances a failure in the process can mean cancer.
As a pop-up book opens it is possible to peek at the pop-up to see how it works. Spying on protein assembly works the same way.But while many people have been working on ways to treat diseases by correcting the function of affected proteins, my research looks at the fundamental question of how proteins fold when they are working properly. If we want to understand complicated diseases, we first need to understand how things work normally.  A lot of the questions I’m asking are just the same as those you might ask about the pop-up book. What does the folded protein look like? What does the unfolded one look like? Is there a preferred order or logic to the self-assembly?
The proteins I study are 100 million times smaller than the pop-ups in a book, and a hundred times smaller than even a light microscope can see. The result is that I can't just watch what happens - instead I have to infer it by measuring other things. For example, by measuring the speed at which a protein folds and then substituting one amino acid building block for another before repeating the measurement, I can find out which parts fold first. Then, by comparing the results for similar proteins, it's possible to work out how small differences in amino acid sequence affect the way the protein folds.
At the moment, if we design a new protein we can only guess what the final shape will be – but it is the final shape that dictates what the protein can or cannot do! Making new proteins is a bit like knowing what you want the pop-up to look like, but clumsily sticking pieces of card onto the book without really understanding how the process works.
But there are ways around this: if you take a protein similar to the product you want, you can make small changes and slowly build up something useful. It's a bit like changing the pop-up dinosaur into a dragon, although making it into a Volkswagon Beetle would be much harder. My hope is that one day we will fully understand the rules of our pop-up books – not only to understand disease but also to treat it by designing protein drugs that will do exactly what we choose.

 

How Climate Change is Choking Marine Ecosystems

Why warmer weather means bad news for the estuarine nitrogen cycle

A Sediment Core
Mass Spectrometer
Apparatus Setup

Why Don't Woodpeckers Get Brain Damage?

Beating your head against a hard surface can be a sign of frustration, yet for a woodpecker it’s a fact of life...

With repeated trauma of this magnitude it's surprising that the bird's head remains attached to its body, never mind the risk of developing a severe headache, concussion or even brain damage. So why don’t they? Indeed, when other small birds accidentally fly into windows they often tumble to the ground and appear to be "knocked out" for a while before picking themselves up and fluttering off; so why should woodpeckers be any different?
The answer is that evolution has equipped them with a number of adaptations that make repeatedly banging your head against a hard surface 20 times per second slightly more tolerable.
Green WoodpeckerFirstly, woodpeckers have relatively small brains which, in contrast to a human, are packed fairly tightly inside their skull cavity. This prevents the excessive movement of the brain inside the skull, which causes so-called 'contre-coup' injuries in humans. These occur when the brain bashes into the skull following a knock on the head. In other words the head stops, but the brain keeps on moving momentarily afterwards.
Secondly, unlike a human brain the surface of which is thrown into ridges and folds known as gyri to enable more grey matter to be packed in, the woodpecker’s brain has a smooth surface and, through its small size, a high surface area to weight ratio. This means that the impact force is spread over a much larger area, relatively speaking, compared with a human. Again, this minimises the applied trauma. The bird’s brain is also bathed in relatively little cerebrospinal fluid, which also helps to reduce the transmission of the shock waves to the brain surface.
Finally, and possibly most importantly, the woodpecker also makes sure that he minimises any side to side movement of his head, and this is where May and his colleague’s fast film footage comes in.
TypewriterThe team found a tame acorn woodpecker, which could be encouraged to perform for their camera by bashing out a few words on an old typewriter. They watched as the bird first took aim and delivered a number of "test taps" before unleashing a salvo of strikes, but always in a dead straight line.
This approach is crucial because it avoids placing rotational or sheering stresses on the nerve fibres in the brain. Humans involved in car and motorcycle accidents frequently develop the symptoms of 'diffuse axonal injury' (DAI) where sudden deceleration coupled with rotation literally twists the different parts of the brain off each other like a lid coming off a jar. By hammering in a dead straight line woody woodpecker avoids giving himself DAI, further minimising the risk of brain damage.
An unresolved issue however, is that the researchers noted from their photographs that their study subject also took the precaution of closing his eyes just before each strike. But whether this was to keep wood chips out, or the eyeballs in, is anyone’s guess!
Original references:
- May et al., Arch Neurol 1979 Jun; 36(6): 370-3
- May et al., Lancet 1976 Feb 28;1(7957):454-5

 

Biomimetics: Borrowing from Biology

The idea of looking to nature for inspiration is a notion perhaps most notably associated with the arts, Mother Nature isn't a muse exclusive to the artist; she can also inspire scientists, engineers and industrialists.
particularly painting and poetry. But
Nor is the concept of borrowing from biology new to us. More than 3000 years ago the Chinese craved a synthetic silk, and more recently the Wright brothers based the designs for their planes on birds' wings. George Mestral grasped the concept for his invention, Velcro, from the burrs that stuck to his dog’s coat, and the unique, super-efficient cooling system of the Eastgate Centre in Harare, Zimbabwe, is modelled on the system of ducts and passages used by termites to maintain a constant temperature in their mounds. It's on these foundations that the field of biomimetics has been built, and over the last 15 years it's gained momentum rapidly.
Also known as biomimicry and bionics, biomimetics can be defined as "the abstraction of good design from nature" and came about when engineers and medical researchers realised that many of the answers they sought were already available in nature. For example, why spend many years and colossal amounts of money trying to design a new building material from scratch when the chances are there is something in nature that can already do most of what you want? Better still it's likely to have been refined to near perfection during millions of years of evolution.
So, with a little ingenuity and some modifications, a once challenging problem can be elegantly resolved. Exploiting nature and avoiding the pitfalls that have already been ironed out by evolution is precisely what Thomas Speck of The University of Freiberg did when designing the "Technical Plant Stem", a novel material combining features from the stems of the giant reed (Arundo donax) and Dutch rush (Equisetum hyemale).
Inspired by the observation of these plants standing tall, swaying in the wind and yet never appearing to break, this new material combines both stiffness and elasticity with a resistance to breakage and has the potential to be used in the fabrication of a wide range of applications from building materials to snowboards.
This relatively new scientific field of Biomimetics is especially interesting as it brings together researchers from all disciplines to generate solutions to a vast array of problems and appears to be limited only by the imaginations of those involved.
Geckos, glue and sticky tapeGeckos are amazing creatures with the ability to walk up the smoothest of surfaces and even on ceilings, but quite how these lizards achieve their adhesive properties eluded scientists for a long time. One suggestion was that, just like cartoon villains with suction cups strapped to their hands and feet, the geckos used suction to adhere to walls. This was ruled out when these sticky little creatures were still able to cling on tightly in a vacuum. Instead, since even the smoothest of surfaces have microscopic undulations, it was suggested that the geckos used friction to climbs walls, but this couldn’t explain why they are able to walk on ceilings. Another hypothesis was that, like the cockroach, they exuded a glue-like substance from their feet, but this was not possible as their feet are dry and free from the glands required to excrete such a substance.
The answer to this conundrum came about in 2000, when Professor Full and colleagues at UC Berkley looked more closely at the toes of the Tokay Gecko (Gecko gecko). They discovered that each of the gecko’s toes were covered in thousands of tiny "nano-hairs", called setae, each less than one tenth the thickness of a human hair. At the end of each seta were hundreds to thousands of minute mushroom shaped structures called spatulae. The gecko’s super adhesive abilities are achieved because these minuscule structures allow the geckos feet to get so close to the surface, such as a wall, that the molecules of the spatulae and the surface are able to interact electrically. This generates tiny forces, known as van der Waals attractions, that lock the two surfaces together. Although individually they are extremely weak, with billions of molecules interacting with each other the combined force is more than ample for the Gecko to stick to pretty much any surface. If your own hand had the same sticking power, it would be able to hold about 40kg.
Once the mystery of the sticky footed gecko had been solved, the applications of this knowledge to technology were rapidly realised. Within three years a group of scientists from the University of Manchester, lead by Professor Geim, had produced a sticky tape that consisted of microscopic hairs of polyimide which mimicked a gecko’s toes. This sticky tape was believed to be as effective as the real thing, and the researchers were not short of offers from Spiderman wannabes who volunteered to be hung from the lab window by the tape. Unfortunately, the would-be spidys' dreams were never realised, mainly because of the lengthy and expensive process used to produce the tape.
Scanning electron microscope image of a 1cm2 section of the Gecko-sticky tape
Spiderman toy hanging from a glass plate, attached using the tape with a contact area of approximately 0.5cm2 with a carry load of >100g.  This toy has been attached to several surfaces before this photo was taken.
In 2006 BAE systems announced that they were able to generate a gecko-like adhesive using a modified version of photo-lithography, the method used to make silicon chips, that was economically viable and easy to scale-up. This super-adhesive was made using polyamide, like nylon, and like the design from Manchester consisted of mushroom shaped structures. While not as sticky as the gecko’s feet, it could quite comfortably stick an elephant to the ceiling, should you have any call to do so! However, unlike conventional adhesives, the gecko-inspired substance can be reused, easily peeling from the surface to which it was stuck, meaning that a Spiderman suit is now a possibility and no doubt likely to appear on a great number of childrens' (and adults') wish lists. The other advantage is that it doesn’t leave any sticky residues behind, so no more patches of blue fluff where something was once stuck. But there are still advances to be made, and the scientists involved hope to make this adhesive even stickier, so for now we’ll just have to wait and stick to using ladders for our window cleaning chores.

Leaves, Loos and the Lotus EffectDespite preferring to grow in muddy rivers and lakes, the leaves of the Lotus plant (Nelumbo nucifera) remain clean and free of contaminants, even after emerging from the murky waters. This self-cleaning ability is believed to be why this plant is regarded as a symbol of purity in many Asian religions and has been the inspiration for many biomimetic inventions.

Instinctively you might think that smoother surfaces would be the cleanest, as grooves and ridges would only serve to trap dirt. However, on closer inspection two German scientists, Professors Barthlott and Neinhuis, revealed that the shiny detritus-free surface of the lotus leaf is anything but smooth. Scanning electron microscope images revealed that the leaves were very rough and covered in micro-lumps and bumps of protruding epidermal (outermost) cells, which were in turn covered in wax crystals around one nanometre (1 millionth of a millimetre) in diameter. The wax crystals are hydrophobic (water hating) and so they repel water droplets and help prevent wetting of the leaf surface. The combination of these micro- and nano-scale features greatly reduces the contact area between the surface and water molecules, which is the key to the cleaning process and explains how even a light rain shower is enough to wash the leaves clean.
Instead of sitting flat along the surface of the leaf, the water only makes contact with the leaf at the top of the lumps (figure 2),  which forces it into spherical droplets. Then, even with the slightest of angles, instead of sliding down the leaf surface the bead of water starts to roll and tumbles off the leaf picking up dirt particles and small insects as it goes. This process, called the Lotus Effect, is so efficient that even honey and water-based glues will roll straight off the leaves, leaving no trace behind.
So-well has evolution refined this system that even hydrophobic dirt particles, which would ordinarily repel water, are trapped by the rolling water droplet and washed away. This is because the particles on the leaves only make contact at the tip of the wax crystals and so do not adhere very well. This means that the energy required by the water to pick them up is much less than the energy required to stick them to the leaf and so they are washed off.
But this effective method of self-cleansing is not restricted to this sacred plant. It also operates naturally in cabbages, reeds and the wings of butterflies and dragonflies, and it has now been exploited by industry to produce several technologies including a water repellent spray developed by BASF. This agent uses nanoparticles and water resistant polymers such as polypropylene, polyethylene and wax that self assemble into tiny structures which can mimic the Lotus Effect. This spray can be effectively applied to a wide range of surfaces from masonry to textiles and leather. Other products in the same vein include Lotusan, a house paint that combines this effect with other characteristics of water-repellent paints, and a more water-efficient urinal that cleans itself using only a fraction of the water required by a regular facility.
I can't imagine many people wouldn’t be attracted by such technology: houses and windows that would clean themselves with every rain shower, shoes that no longer need polishing, clothes that shun dirt. And the technology can have a positive environmental impact too, dramatically reducing the water required to flush a toilet for example.
Blood clots, arteries and self-healing space craftNevertheless, inspirational as nature may be, not all biomimetic innovations are direct copies of their natural world counterparts. Instead, sometimes the concept provides the clue to a more advanced technological solution. Take the blood clotting system for example. When you cut yourself, it is not long before your blood clots to prevent further bleeding and a scab appears. Hidden and protected by the scab your body repairs the damage below and after a short period it is as good as new.
So can a similar method be adopted to repair wounds in the skin of a spacecraft? Well yes and no. On the one hand a self-healing system would spare astronauts from having to attempt risky repairs in space, but a repair that worked on the relatively slow time-scale used by the body's clotting system would be of little practical benefit, so it would need to be speeded up.
This arrangement means that if the material is stressed or cracked, the tubes will rupture, allowing the two "clotting" components to escape and mix. The resulting hard plug will block the breach and restore strength and integrity to the material. Indeed, by including a fluorescent dye to the tubes, it's possible to see the new hardened resin being deposited wherever the material was damaged (figure 3c).
Although the inclusion of the glass "blood vessels" reduced the strength of the material by 16% and the healed section was only 87% as strong as the original, this piece of research demonstrates that the concept of self-healing materials is feasible and now research is on-going to produce stronger "healants". Also, unlike the mammalian vascular system where blood circulates and is topped up in the event of loss, the present system works only once. So the team are now looking at ways to allow circulation and re-filling of the vessels. And just as our own circulatory system plays a key role in transport and temperature regulation in the body, it may be that the vessels of the space craft could be used to serve similar purposes too, helping to keep down weight and save space.
Another feature of the mammalian response to wounding that would be useful in the vasculature of a space craft is bruising, which can indicate damage below the surface. Often fractures occur inside a composite material leaving no external sign of damage. But if a give-away "bruise" could be generated at the same time as the healant is deposited, it could be used to identify problem areas more speedily.
The tip of the iceberg...Sometimes inspiration can be gleaned from the strangest of places, such as worms inspiring the development of robots that could be used to carry cameras into your intestines, traffic systems modelled on the behaviour of ants, and the skunk cabbage that is revealing secrets of how to keep warm during the winter.
Perhaps the most quirky phenomenon that sparked some research was the observation of bullet-proof pheasants. Occasionally, a pheasant can be hit with shot from a shotgun and yet escape unscathed, possibly due to its feathers absorbing the shot’s energy. This sparked an interest in understanding the properties of the feather protein keratin and its potential use in high-velocity impact protection, such as bullet-proof vests.
Other bio-inspired inventions include the sharkskin swimsuit, worn by 28 of the 33 gold medal winners at the swimming events in the 2000 Sydney Olympics. The swimsuit was designed to channel water over the body in the same way that a shark's skin does, reducing drag. Researchers have also been looking at the humble pine cone for other clothing ideas such as anti-sweat ventilation flaps that open and close in response to moisture when things get a bit sweaty. Penguins are also helping to keep polar explorers warm thanks to synthetic insulators based on their feathers; the breakthrough here is that, unlike down, they don't lose their insulating capacity when they become wet.
Where the next invention or moment of inspiration will come from, is virtually impossible to predict, but nature appears to have an inexhaustible supply of answers. All we need is a little ingenuity an open mind.

Bio-plastics: Turning Wheat And Potatoes into Plastics

he science of how "taters" can become Tupperware

In the past, fields of wheat and rows of potatoes were seldom destined for anything more than a rumbling tummy. But bio-products have come a long way since people first branched out into weaving hemp into clothes and pulping papyrus into scrolls. Today the line between Mother Nature and man made has never been more blurred. Animals are re-engineered into living drug factories, crops fuel our cars and now plants are increasingly being repackaged as the epitome of the synthetic world – plastic. Wheat, maize, vegetable oils, sugar beet and even the trusty spud are finding new life as water bottles, car fuel lines and laptops.

Bio-plastics harness the natural structures found in crops or trees, such as slightly modified forms of the chains of sugars in starch or cellulose, that share the ability to be easily reshaped that has made conventional oil based plastics so useful. Bio-materials scientists are also constantly tweaking these natural structures to try and better replicate the durability and flexibility of conventional plastics.
Global business is now turning to bio-plastics for an increasing number of applications, as consumers and governments demand cleaner alternatives to petroleum based technologies and their reckless production of the greenhouse gas CO2.
Worldwide players, such as DuPont and Toyota Motor Corp, are making vast investments in new technologies and processing plants with the hope of cornering a multi-billion pound industry.
The "BC" at Bangor University in North Wales has 18-years experience of working with large companies and Non-Governmental Organisations (NGOs) to find sustainable and viable bio-based alternatives to man-made materials.
BC director Paul Fowler points out that “practically anything that you can find as polyethene you can find as a bio-plastic. You are talking about a whole range of everyday products - cups, combs and wrappers, everything you can think of is out there. There are inroads being made all the time - on the one hand there is research into trying to get biological alternatives to replicate the properties of conventional plastics and on the other hand people are looking at the natural properties of these plants and trying to find an application for them. Most of the manufacture is happening in the US and continental Europe. The UK is a producer of wheat starch and biotimber but the only major bioplastic producer is Innovia Films in Cumbria, which produces cellulose films.”
Innovia Films has an annual turnover of £400m, employing 1,200 people worldwide and producing more than 120,000 tonnes of film – used in packaging to protect food. Japan is also forging ahead, from the leading role in bioplastic production played by Toyota to its recent passing of a triumvirate of laws pushing forward environmental initiatives.
In South Korea too there is a rapid drive to replace conventional plastic packaging with polylactic acid bio-plastics.
Fowler says bio-plastics also offer an opportunity to get a double return for the energy used in their manufacture – first as a useful item and secondly as a fuel source. “My view is that we should burn them at the end of their life to recover energy, which could be then used to produce new materials,” he said. “In the first instance you have a valuable resource can use, be it as packaging or a shopping bag, and then you are also getting some energy back at the end of it. The biggest advantage of such bio-materials is the reduction of CO2 emissions in their production over petrochemical-based plastics.”
He also suggests that burning bio-plastics would also avoid the problems caused by them breaking down and producing methane, which is 25-times more potent as a greenhouse gas than CO2.
The BC is currently looking at developing naturally-derived alternatives to phthalates, which are plasticisers added to PVCs to make them more flexible in products such as electrical cable flex. It follows concerns that phthalates are metabolised in the body into substances that can mimic the body's own hormones, including those concerned with fertility. The centre is also developing bio-resins, natural alternatives to synthetic resins such as phenol and formaldehyde.
What types of bioplastic are there?
The common types of bio-plastics are based on cellulose, starch, polylactic acid (PLA), poly-3-hydroxybutyrate (PHB), and polyamide 11 (PA11). Cellulose-based plastics are usually produced from wood pulp and used to make film-based products such as wrappers and to seal in freshness in ready-made meals.
Thermoplastic starch is the most important and widely used bioplastic, accounting for about 50pc of the bio-plastics market. Pure starch’s ability to absorb humidity has led to it being widely used for the production of drug capsules in the pharmaceutical sector. Plasticisers, such as sorbitol and glycerine are added to make it more flexible and produce a range of different characteristics. It is commmonly derived from crops such as potatoes or maize.
Phone made from bioplastics
PLA is a transparent plastic whose characteristics resemble common petrochemical-based plastics such as polyethylene and polpropylene. It can be processed on equipment that already exists for the production of conventional plastics. PLA is produced from the fermentation of starch from crops, most commonly corn starch or sugarcane in the US, into lactic acid that is then polymerised. Its blends are used in a wide range of applications including computer and mobile phone casings, foil, biodegradable medical implants, moulds, tins, cups, bottles and other packaging.
PHB is very similar to poylpropylene, which is used in a wide variety of fields including packaging, ropes, bank notes and car parts. It is a transparent film, which is also biodegradable. Interest in PHB is currently very high with companies worldwide aiming to expand their current production capacity. There are estimates that this could lead to a price reduction below five euros per kilogram but this would still be four times the market price of polyethylene in February 2007. The South American sugar industry has commited to producing PHB on an industrial scale.
PA 11 is derived from vegetable oil and is known under the tradename Rislan. It is prized for its thermal reistance that makes it valued for use in car fuel lines, pneumatic air brake tubing, electrical anti-termite cable sheathing and oil and gas flexible pipes and control fluid umbilicals. These are often reinforced with fibres from the kenaf plant, a member of the hibiscus family traditionally used to make paper, to increase heat resistance and durability.
At the cutting edge of bioplastic technology lie polyhydroxyalkanoate (PHA) materials. These are derived from the conversion of natural sugars and oils using microbes. They can be processed into a number of materials including moulded goods, fibre and film and are biodegradable and have even been used as water resistant coatings.
What are the benefits of bio-plastics?
- Reduced CO2 emissions.
One metric ton of bio-plastics generates between 0.8 and 3.2 fewer metric tons of carbon dioxide than one metric ton of petroleum-based plastics. Electronic giant Sony uses PLA in several of its smaller components, including one of its new walkmans, but in future hopes to use PLA-based polymers to reduce its carbon dioxide emissions by 20pc and non-renewable resource input by 55pc compared to oil-based ABS.
- Rising oil prices
Despite currently costing more to produce than conventional plastics bio-plastics are becoming more viable with increasing and instability in oil prices, which are in turn triggering spikes in conventional plastic costs, illustrated in a sharp upturn two years ago. Dwindling oil supplies means that man will eventually be forced to turn to a sustainable basis for plastics.
- Waste
Bio-plastics reduce the amount of toxic run-off generated by the oil-based alternatives but also are more commonly biodegradable. The US’s second largest biopolymer producer Metabolix, of Cambridge, Massachusetts, claims that its plastics are biodegradable in composting bins, wetlands and the oceans. On the flip side not all bio-plastics are biodegradable and there are a growing number of conventional plastics that can naturally break down. The downside of their biodegradability is the methane that can be released as the bio-plastics decompose is a powerful greenhouse gas.
- Benefit to rural economy
Prices of crops, such as maize, have risen sharply in the wake of global interest in the production of biofuels and bio-plastics, as countries across the world look for alternatives to oil to safeguard the environment and provide energy security.
- Enhanced properties
In some fields engineered bio-plastics are now beating oil-based alternatives at their own game. Multinational materials giant Arkema has produced a form of Rislan PA11 that is being used in Europe and Brazil in fuel lines to carry biofuels as it is better able to withstand the corrosive effects of biofuels than oil-based alternatives such as polyamide 12. Rislan is widely used in oilfield applications as well as automotive brake lines. Elsewhere innovations in PA11 production are helping increase car passenger safety and reduce the risk of accidents by inhibiting spark ignition in the fuel lines. US car giant General Motors has replaced its non-conductive fuel-pump modules for new North American car models as it felt it was the best material for the job. In the US chemical multinational DuPont says it has developed a bioplastic derived from corn sugar that has superior stiffness and strength to its naturally based competitors. Global electronics corporation NEC has produced a kenaf-reinforced laptop casing, made of 90pc PLA, which helps reduce overheating by conducting heat better than stainless steel coupled with high temperature resistance and increased strength.
Who are the flagwavers?
Bio-plastics are not being produced by a group of hippies brewing up in their garage. Some of the world’s largest companies including multi-billion dollar chemicals company DuPont, car manufacturer Toyota, UK-based Innovia, US food processing behemoth Cargill and electronics giants NEC and Fujitsu are pouring money into driving the technology and production forward.
NEC and its partners Unitika and NTT DoCoMo produce mobile phone and laptop casings based on plant-derived bio-plastics, mostly PLA. NEC plans to expand its green credentials by substituting more than 10pc of the oil-based plastics in its electronic products with bio-plastics by 2010.
Toyota Motor Corp uses mainly PLA bio-plastics, derived from sweet potatoes corn and sugar beet, reinforced with kenaf to produce components for its cars such as the Prius and Lexus. It hopes to grow its bio-plastics division into a four billion yen business by 2020 and capture two thirds of the global market for petroleum free plastics.
Fujitsu introduced its FMV BIBLO notebook PC series two years ago, which it has manufactured using a material called Ecodear, a combination of 50 pc PLA and an oil-based plastic. Fujitsu is now developing a castor oil derived PA 11 plastic with Arkema, which is more flexible and will help expand its use of bio-plastics in notebook computers. The material can withstand repeated bending thanks to scientists weakening the interaction of the chain molecule in PA 11 and relaxing the stereoregularity of their organisation. The improved durability means its prototypes of PC cover components consist of 60-80 percent of the new bioplastic, an unprecedented achievement to date. Fujitsu is also using high density fillers to increase strength and extend its use into notebook covers and other applications requiring high impact resistance. The new material is expected to cut carbon dioxide emissions by 42pc compared to oil-based nylon 6/6.
DuPont in particular is continuing to expand the market for bio-plastics and plans to continue to offer hybrid bio/conventional plastic materials until the market matures, which could eventually cost less than the oil-based alternatives. DuPont has teamed up with sugar giant Tate & Lyle to build the world’s largest aerobic fermentation plant in Loudon in Tennessee in the US for the production of bio-PDO, with a capacity of 45,000 metric tonnes a year.
The largest commercial producer of bioplastic in the US is NatureWorks, owned by Cargill. The company’s plant in Blair, Nebraska uses corn sugar to produce PLA plastics packaging material and its own Ingeo-brand fibres.
What lies ahead?
With US President George Bush’s recent pledge to produce 35 billion gallons of renewable and alternative fuel by 2017 - driving the price of maize up 60pc in the past two months - the farmer’s field is fast turning into a high tech bio-battleground.
Mr. Fowler warns that the still fledgling industry will have to fight for space and commercial viability as millions of hectares are given over to corn, rapeseed and sugarbeet for bio-fuel production. "There is a real tension between the use of agriculture for fodd versus plastics and other non-food uses and this whole move to produce new fuels," he said. Whereas only two years ago plant materials were at the cheap end of the market and bio-products such as straw had little value, now it is really much more costly. There would have to be a step change in the extent of the production to match oil-based plastics. The amount of bioplastics produced worldwide is less than 200,000 tonnes a year; contrast that with the more than 30 million tonnes of oil-based plastics. You can see we have a long way to go before they replace conventional plastics".

 

The Science of HIV & AIDS in the UK

The biology and impact of the world's worst pandemic

Human Immunodeficiency Virus (HIV) Particle
New HIV Infections, AIDS cases and HIV Deaths in the UK by year
Side effects...
This means that individuals using HAART have to take medication every day for the rest of their lives, and this often causes severe side effects. When individuals first start treatment they may suffer headaches, hypertension or general malaise (feeling unwell), although these usually improve or disappear with time. Other side effects can include diarrhoea, nausea, fatigue, anaemia, lipodystrophy, skin problems, neuropathy, mitochondrial toxicity, dyslipidaemia and bone problems. Whilst most people who take anti-HIV medications have some side effects it must not be assumed that everyone gets every side effect that has ever been written down.

Another problem with combating HIV is that a number of different strains of the virus can arise due to differences in selection pressures as the virus encounters different individuals, different drugs and different routes of spread. This can result in resistance to multiple anti-retrovirals and frequently occurs through a process called recombination. It occurs because each HIV virion carries two complete RNA genomic strands, meaning that homologous recombination can occur when a cell is coinfected with two different but related strains. The two strains may then exchange genetic material, including drug resistance traits. The process of recombination also therefore poses theoretical problems for the development of a safe vaccine against HIV.
The situation is also made worse by the fact that increasing numbers of patients are found to be carrying resistant forms of the virus at diagnosis, even before any drug therapy has been administered. Indeed, in 2004 an estimated 9% of new HIV diagnoses were found to be drug resistant strains, presumably acquired from individuals who had already received treatment. If patients then acquire additional strains of the virus with different resistance profiles the process of recombination can yield multiply-resistant viruses. In a case described recently in the Lancet this resulted in an individual producing a strain of the virus that was resistant to every available anti-retroviral agent. The patient in question also progressed to AIDS and died within six months of becoming infected.